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Abstract

Federated learning (FL) enables clients to collectively train a machine
learning model without sharing their data, thus preserving privacy. Feder-
ated learning is particularly effective in supervised settings. However, in
unsupervised settings, where clients prefer not to disclose their data labels,
the optimization of the objective function faces additional challenges. We
propose a Bi-Objective optimization method that enhances Federated Un-
supervised Learning (FedUL) algorithm to address these issues. This report
validates the effectiveness of our method experimentally using publicly
accessible data to ensure reproducibility of the results.

1 Introduction

In this project, we aim to minimize the cost function associated with multi-class
classification tasks. Training local models in unsupervised federated learning
settings using decentralized datasets can encounter numerous obstacles. These
include the absence of a definitive objective function for model evaluation.
Unlike unsupervised learning, where generative models like GANs or diffusion
models excel at modeling data distributions, federated learning contends with
heterogeneous datasets. This heterogeneity can prevent local models from
acquiring generalizable knowledge and complicate the aggregation of these models
on the server side.

1.1 Related Work

FedUL is an algorithm designed to overcome the challenge of unclear objectives
in the unsupervised FL setting. It begins with the natural segregation of data
across clients, splitting each client’s dataset into multiple subsets. Each subset



is indexed relative to the client’s dataset, serving as the surrogate label. This
approach facilitates training on surrogate data using a supervised task. Thus,
the objective becomes minimizing the loss function associated with predicting
the surrogate labels. The algorithm assumes we have access to the class priors
and a shared class-conditional distribution among clients. The primary goal of
FedUL is to use an injective transition function ) to recover the optimal model
from the surrogate task, ensuring that the knowledge acquired is applicable for
classifying the actual data.

This goal is achieved by implementing Theorem 1 from the paper, which
establishes a method to correlate the posterior probabilities of the real and
surrogate data. Specifically, it assesses the likelihood of each surragate dataset
chosen per client. Which is approximated as the number of features for that
dataset over the total number of features for the client. Then it maps posterior
probability from the real space to the space of the surrogate data. Then it
utilizes the prior probability of the real classes to assess the likelihood of a class’s
presence in a client’s dataset, effectively normalizing the posterior probability
predicted by the global model, which is the last matrix in the unnormalized
representation of the injective function. By optimizing the surrogate classifier,
the classifier for the actual task is concurrently enhanced, supported by other
assumptions detailed in the paper.

Theorem 1

For each client ¢ € [C], let 7. : X — AM~1 and n : X — AK~! be the
surrogate and original class-posterior probability functions, respectively, where
(Te(2))m = Pe(y = m | x) for m € [M], and (n(z))r = p(y =k | x) for k € [K].
Here, AM~1 and AX~1 are the M-dimensional and K-dimensional simplexes,
respectively.

Let e = [R1c,...,7ae] ' and m = [my,...,7x]" be vector forms of the
surrogate and original class priors, respectively. Let IT, € R™*X be the matrix
form of 7, ;. = pf,(y = k) . Then we have:

Ne(x) = Qe(n(); 7, 7, ILe)

where the unnormalized version of the vector-valued function Q. is given by:

Qc(n(z);m, 7, 1) = Dx_ - U, - D' - ().

Here, D, denotes the diagonal matrix with the diagonal terms being vector a,
and ‘-’ denotes matrix multiplication. Q. is normalized by the sum of all entries,

e, (Qc)i = >, (Qc);



2  Our Contribution

2.1 Overview

We introduce an enhanced algorithm designed to enhance the performance of
FedUL in terms of accuracy and robustness. Recognizing FedUL’s effectiveness,
our approach integrates FedUL with an additional optimization phase utilizing
supervised learning techniques. This integration involves training local models
using FedUL, aggregating these models at the server, and subsequently imple-
menting a bi-objective optimization task trained on publicly accessible labeled
data, aiming for Pareto optimality. This approach has shown to improve FedUL’s
performance, especially in non-IID settings.

2.2 Significance

Despite the scarcity of publicly accessible labeled datasets in many areas, our
method leverages any applicable available small-sized labeled dataset in conjunc-
tion with a larger decentralized dataset. This approach preserves the privacy
of client data while enhancing the model’s performance through bi-objective
optimization techniques.

2.3 Integration Techniques

To integrate the updates from local models with the supervised model’s updates,
we explored two methods:

2.3.1 Method 1: Feedback Optimization

In this approach, we fine-tune the aggregated global model using the labeled
data retained at the server. This phase optimizes the objective of the server’s
model based on the labeled data. Following this, we establish a feedback loop
by redistributing the fine-tuned model back to the clients. This loop allows the
clients to further optimize the model with their local data, enhancing the overall
accuracy of the model.

2.3.2 Method 2: Independent Enhancement

Alternatively, we execute the FedUL process to aggregate the local models into
a global model. Parallel to this, we optimize an independent model, intialized
uniformly with the global model, specifically on the labeled data. The parameters
learned from this supervised task are then combined with the global model’s
parameters. This combination is regulated through a manually tuned hyper-
parameter, effectively blending the insights of both the local models and the
supervised model. A similar loop to method 1 is implemented.



3

Proposed Algorithm

Algorithm 1 Federation of unsupervised learning (FedUL)

Server Input: initial f, global step-size a4, and global communication round R

Client ¢’s Input: local model f., unlabeled training sets U, = {U"*}

M.

me1, class

priors II. and 7, local step-size oy, and local updating iterations L
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Start with initializing clients with Procedure A.
forr=1— R do
Run Procedure B and Procedure C iteratively.
end for
procedure A. CLIENTINIT(C)
Transform U, to a surrogate labeled dataset U, according to (6)
Modify f to g. = Q.(f), where Q. is computed according to Theorem 1
end procedure
procedure B. CLIENTUPDATE(C)

fe— f > Receive updated model from ServerExecute
ge + Qc(fe)
fori=1— L do
e < g — VI (ge; Ue) > SGD update based on objective (7)
fe fe—aVI(Q(f:);U.) © Update on g. induces update on f,
end for

Send f. — f to ServerExecute
end procedure

: procedure C. SERVEREXECUTE(R)

if using Method 1 then
Fine-tune f on the server’s labeled data
else if using Method 2 then
Independently train a model f’ on labeled data
f + (1 — hyperparameter) x f + hyperparameter x f’
Broadcast updated f to ClientUpdate
end if

: end procedure




4 Empirical Results

4.1 Experimental setup

The experiments were done on the MNIST dataset using a CNN with the exact
dimensions and parameters as conducted in the experiments of FedUL, with
exception of a batch size of 100 instead of 128 for splitting considerations. The
goal is achieve a performance better than that of FedUL’s and validate the
approach of bi-objective optimization. Below is a table comparing our model’s
mean error compared to FedUL’s, with FedUL-+Mzx being a place holder for our
algorithm with method #z. The best performing model on the validation data
is chosen.

Table 1: Setup

Clients Parameters Data Splitting
#C =5 a=1le—4 Test: 10k
Set/C = 10 batch = 100 FedUL: 36k
epochs = 100 Supervised task: 12k

method 2’s hyperparameter: 0.5 Validation: 12k

4.2 Results

Table 2: Mean Error Rates

Algorithm ~ Mean Error (IID) Mean Error (non-I1ID)

FedUL 0.78 2.98
FedUL-+M1 0.69 0.77
FedUL-+M2 0.69 0.79

Note

Additionally, plots showing the mean error and losses per epoch are included
and briefly discussed in the appendix.



5 conclusion and Future Work

In conclusion, we found that implementing a bi-objective optimization with
FedUL and a supervised model can significantly enhance the performance of a
standalone FedUL model, particularly when applied to non-IID datasets. Our
research has demonstrated two key findings. First, FedUL is capable of learn-
ing concurrently with a supervised federated learning technique without the
objectives interfering destructively with each other. Second, the integration of
knowledge from a supervised model into FedUL not only boosts its accuracy but
also facilitates faster convergence. In the current setting, method 1 seems to be
perform better than method 2.

Looking ahead, future work could focus on several areas. Extensive vali-
dation of the algorithm under diverse settings and with various models could
further establish its robustness and adaptability. Additionally, optimizing the
hyperparameter tuning process to enhance performance and ease of use. Finally,
examining the impacts of different data distributions and more extreme cases of
non-IID data could provide deeper understanding for broader applications in
real-world scenarios.
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Appendix

Discussion

5.1 Loss

Shown in Figure 1 is the supervised learning loss and surrogate task loss when performing
the hybrid model, compared to the loss of performing standalone FedUL. The loss of
the surrogate task and FedUL seems to be exact, with the exception that the surrogate
task’s drops faster initially. This shows the positive influence of the hybrid model on
adjusting the parameters of the clients’ end. Additionally, the loss of all models seem
to consistently decrease, indicating a shared objective.

It is also worth mentioning that Figures 2 and 4 show the loss dropping much faster
than the Figures 1 and 3. This indicates that method 2 can lead to faster convergence.

5.2 FError Rate

In figure 5, we see a clearer picture of how the hybrid model outperforms the Stan-
dalone FedUL Algorithm. It consistently has lower error rates and converges faster.
Additionally, in figures 7 and 8, the mean error shows a steep decrease which indicates
that the hybrid model handles the non-IID datasets well.
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Learning Loss vs Surrogate Method 1 (non-1ID)
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