
Quantum-inspired Machine Learning Using Tensor
Networks

Abdullah Alzahrani
Rensselaer Polytechnic Institute

alzaha@rpi.edu

Nicholas Pacey
Rensselaer Polytechnic Institute

paceyn@rpi.edu
Cory Tsang

Rensselaer Polytechnic Institute
tsangc@rpi.edu

Abstract

This final report represents our team’s progress and achievements made during our1

time researching and applying tensor networks (TNs) and their use in improving2

Machine Learning (ML). Tensor networks, are data structures aimed at efficiently3

representing and manipulating high dimensional data. Using topologies such as4

matrix product state (MPS), it decomposes large tensors offering a possibility for5

low rank approximation and reducing the scaling of parameters with relation to6

the input to polynomial, therefore reducing the computational complexity that ML7

tasks face in major areas. We have gained substantial understanding of TNs within8

the context of ML which we have demonstrated on a classical system and a quan-9

tum system. On a quantum system, using Qiskit, we have successfully leveraged10

the work of Gopal Dahale on Medium showing the use of Qiskit circuits to rep-11

resent TNs. While in a classical setting we have created various implementations12

leveraging the TensorNetwork backend and work done by Stavros E., et al. on im-13

age classification using TNs. The results of our research demonstrated the benefits14

of integrating quantum computing principles into machine learning to successfully15

predict two digits of the MNIST dataset and have demonstrated the approach of16

applying TNs in a classical setting.17

1 Motivation18

Our project was motivated by the significant challenges in implementing machine learning on quan-19

tum systems using classical methods, which struggle with representing nonlinear activation func-20

tions. Tensor Networks offer a solution by using quantum circuits to efficiently implement ML21

tasks, allowing for ML to be conducted directly on quantum systems. This eliminates the need to22

transfer data from quantum sensors to classical computers, preserving the quantum information.23

Furthermore, classical ML often encounters the ”dimensionality curse,” where the complexity in-24

creases exponentially with the number of dimensions. TNs, initially designed to represent high-25

dimensional quantum information, provide a way to mitigate this issue. They also naturally support26

parallel computation, which can further reduce the complexities of large tensor operations. Our27

project has leveraged these advantages to improve the performance and scalability of ML algo-28

rithms.29



2 Milestones30

For our first milestone we began by reviewing and identifying relevant literature for both TNs and31

ML to educate ourselves about how to achieve the project’s goal. We began with two sources in32

mind, Introduction to TN 1, TN for ML (Google) 2, and Supervised Learning with quantum inspired33

NNs. 3 For the next milestone, we moved on to apply this knowledge by using Qiskit to demonstrate34

how TNs perform in an image classification task. 4 We did this by using the implementation of the35

MPS topology for TNs based on the code in the Medium article. Next, we used RealAmplitudes36

from qiskit.circuit.library to create each block of MPS which can be seen in the image below.

37

We then pre-reprocessed the input data using PCA before running the Qiskit code on an ideal simu-38

lation and on the simulated version of ibm rensselaer backend implementing a variational classifier.39

For our last milestone we implemented TNs in classical ML for image classification tasks utilizing40

the simple code examples provided by Google in their Github repository. In addition to the brief41

TensorNetwork documentation found in reference [9]. We started this process by getting familiar42

with TensorNetwork and the TensorFlow environment to understand the best practices we should43

utilize for the GPU option. Preprocessing the MNIST dataset was a step we made in order to44

enhance the performance of the model. Next, we encoded the image by flattening, normalizing and45

mapping the pixel values into 2 dimensional vectors. After encoding the image, we began to intialize46

the parameterized MPS network, with ReLu activation function at each node. Our last step in this47

process was to use the cross-entropy loss function, adam optimizer, and backpropagation methods48

provided by TensorFlow to train the model. We’ve also experimented by varying the compromised49

in bond dimension.50

1Look at reference [3]: This introduction will serve as reference for TNs
2Look at reference [1]: This will serve as the main resource for the classical implementation of TNs in ML.
3Look at reference [2]: This will serve as a theoretical reference for the use of TNs in ML.
4Look at reference [5]: This Medium article was our guide for the Qiskit implementation
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3 Results51

In the quantum section of the project we all gained an understanding of TNs in relation to ML52

algorithms, specifically how they manipulate and represent quantum information.53

As a result of our work we have discovered the accuracy of the quantum algorithm with noise54

in our implementation. We have trained the QNN with MPS with 50 images per digit and had55

testing data of 1000 images per digit. Our experiments have measured and compared the accuracy56

in classifying digits three and six in a quantum neural network using matrix product state tensor57

networks. The results of these experiments are as follows: 80% accuracy for training data and58

74.7191% of accuracy for testing data. The graph of our objective function over value can be seen59

below and represents our qnn accuracy in guessing the correct digit either three or six based off the60

amount of iterations it goes through and trains on the set of 50 images per digit.

61

We have also implemnted the circuit on the ibm rensselaer real backend but we believe that due to62

poor optimization of the circuits the following results were achieved.63

Here are our jobs sent to the quantum computer on campus:

64
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During our final presentation, our team has presented all relevant research about the inclusion of TNs65

inside ML tasks using techniques such as Matrix Products States (MPS) to efficiently represent the66

high-dimensional complex quantum states as well as our findings from experiments as mentioned67

previously. Additionally, we plan to compare computational speed to complete the task from the use68

of TNs in algorithms to classical algorithms for MNIST dataset that will be discussed more in the69

future direction.70

In conclusion, our research has shown that TNs are highly effective for ML tasks, specifically on71

QC tasks of image classification tasks. While we have seen tremendous success with implementing72

tensor networks on quantum computer tasks, we have room for improvement on classical tasks. Once73

we have we have successfully implemented the model, we believe some potential applications which74

may benefit from this method include: Big data analytics, image and processing, and various other75

Optimization problems. There are many fields of application that rely on large amounts data that76

could benefit greatly from the improved computational speed and accuracy results that the inclusion77

of TNs in ML.78

4 Future direction79

In regards to our work with Qiskit, we hope to optimize the quantum circuit on the ibm rensselaer80

framework in the future. For reasons yet unknown, the Qiskit code as run on actual hardware does81

not see the same levels of performance that the simulator does; as such, moving forward, it is82

important to figure out why the quantum computer lacks the results that were initially simulated,83

and if such results are possible at all. Due to concern of under fitting the data set demonstrated by84

the low results, it may be worth modifying the sizes of the training and test image set.85

In our work with the TensorNetwork library, we would like to improve upon the model we had86

developed in accordance with the research done by Google in the hopes of verifying the results87

claimed and explaining the reason for these results. We hope that the more accurate model will88

allow us to properly compare use of the TensorNetwork library against other forms of machine89

learning.90

As it currently stands, however, much of the TensorNetwork library has gone undocumented, with91

many important sections of the library offering no clarification on how they work. Through our92

efforts in the classical space, we also hope to provide a well documented, open source example of93

the ideas in the TensorNetwork library article so that further research into the use of TNs in classical94

ML may have a better foundation.95

5 Related works96

Tensor networks have seen successful implementation in physics and mathematics due to their effi-97

cient representation of high dimensional data [2]. Recently, it has also gained attention in applica-98

tions like machine learning [1] which we aim to study and present in this project. To facilitate the99

application of TNs in ML, the TensorNetwork library was developed [1]. We have looked at many100

sources to understand TNs in both quantum and classical ML in addition to other tasks. In a quantum101

setting, the approach is to first encode the MPS network into a parameterized quantum circuit which102

is then trained using a quantum neural network [6]. The goal is to choose the phases of the rotational103

gates that will best replicate the TN. The circuit is then optimized to run on noisy intermediate-scale104

quantum hardware [5]. As for classical uses of TNs specific to classifying the MNIST dataset, we105

start by mapping the input into two dimensional vectors and contracting them with a parameterized106

MPS. The goal is to have the contraction, which will result in a 10 dimensional vector representing107

the ten classes, best predict the underlying classification task. The MPS is trained such that it will108

ultimately represent approximate a perfect classifier for the task [8]. By taking an inner product of109

the variational MPS and the encoded input data, the labels can be retrieved which we will then use110

to optimize the cross entropy objective function [1].111
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